RESTORING FAIR SITES: STRATEGIES FOR RESTORATION

🚺 King County

Department of Natural Resources and Parks Water and Land Resources Division Presented by Kate Macneale Stakeholder Workshop, Seattle

May 12, 2015

Recommending restoration actions

- ->> Best professional judgment
- More outreach

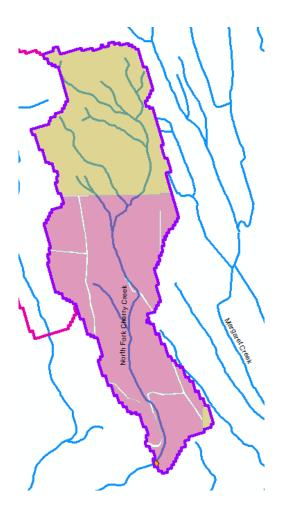
Desktop reconnaissance & outreach

Historic and current stressors?
Risk of future impacts?
What actions could alleviate or remove stressors?

Desktop reconnaissance & outreach

Historic and current stressors?

- 🥍 Land use CCAP data
- ->> 2006 and 2011 orthophotos
- ->> Age of homes, density of developments_
- Market PSWC process-specific analysis
- ->> People familiar with site and basin
- ->> Natural limitations



Desktop reconnaissance & outreach

Risk of future impacts?

- 💓 Zoning
- ># 2011 orthophotos and Google maps
- 🥍 Zillow
- \rightarrow People familiar with site and basin

What actions could alleviate or remove stressors?

- ->>> In-channel restoration
- ->> Riparian restoration
- ->> Agricultural best management practices (BMPs)
- ->> Mining BMPs
- ->> Stormwater BMPs
- Programmatic BMPs

What actions could alleviate or remove stressors?

Multiple In-channel restoration

	add wood		
	add substrate		
In-stream	enhance sinuosity		
	replace culverts		
	stabilize stream banks		

What actions could alleviate or remove stressors?

Pinarian	stabilize slopes
Riparian	plant vegetation, extend buffer

What actions could alleviate or remove stressors?

Agricultural best management practices (BMPs)

Agricultural	exclude livestock
	manage waste
DIVIF S	manage soil loss

What actions could alleviate or remove stressors?

	road maintenance
Forest BMPs	minimize clearcutting
	replant

What actions could alleviate or remove stressors?

->> Mining BMPs

Mining BMPs mining BMPs

What actions could alleviate or remove stressors?

Stormwater BMPs

	flow controls		
Stormwater	treatment		
BMPs	maintain storage and treatment facilities		
	street sweeping		

What actions could alleviate or remove stressors?

Programmatic BMPs

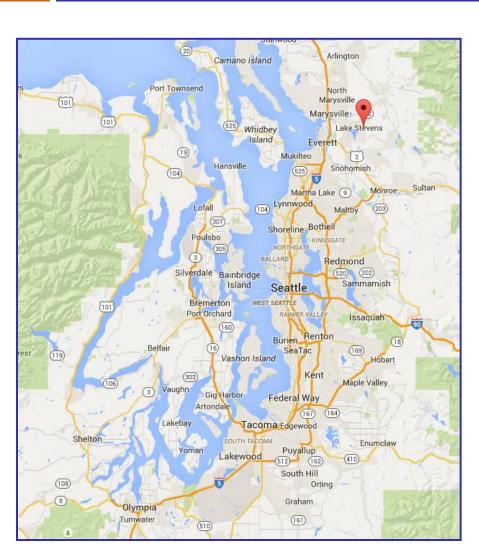
	limit pesticide use
Drogramanatio	outreach and education campaign
Programmatic	create incentives to follow BMPs
BMPs	purchase and protect property
	seed invertebrates

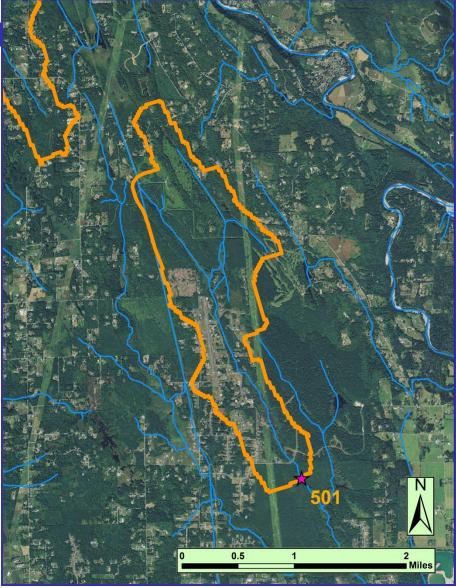
Likelihood action would help restore the basin:

not applicable	unlikely	possibly	likely	highly likely
0	1	2	3	4

Likelihood action would help restore the basin:

not applicable	unlikely	possibly	likely	highly likely
0	1	2	3	4




more confident

less confident

more confident

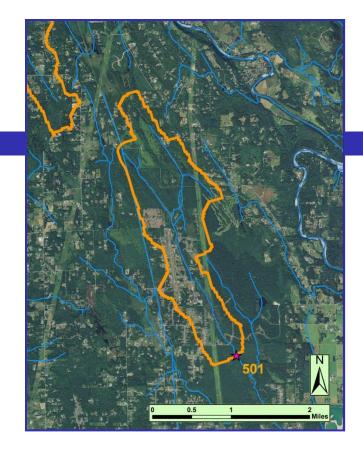
Example 1: Little Pilchuck Creek (Snohomish) (CAR3A, 501)



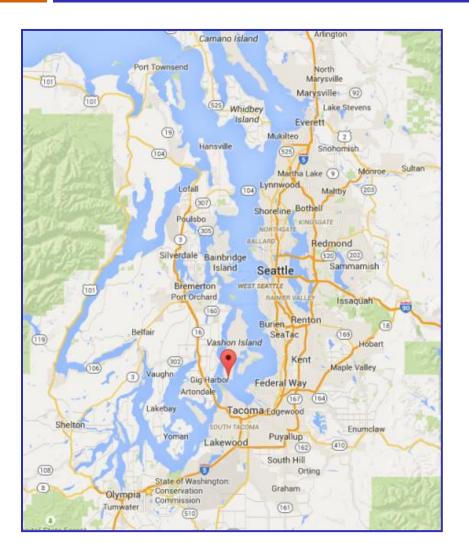
Exan	nple 1:	Little Pi	ilchuck	Creek		
Basin area (acres)	% urban within basin 1-km of site	% urban in whole basin	% pasture in whole basin	% natural in 90-m buffer in whole basin	% impervious in 2011 in whole basin	
1406.5	11.41%	11.89%	0.52%	93.43%	3.92%	

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	1999- 2012 Median
B-IBI										32	30	28					30

Example 1: Little Pilchuck Creek

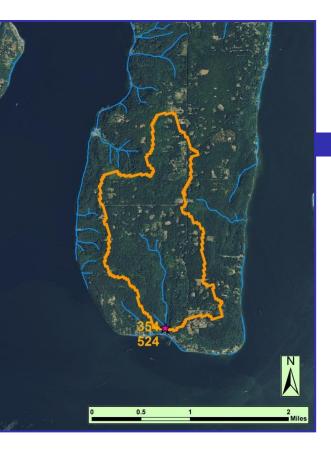

Resto	Likelihood action would help restore the basin	
	add wood	2
	add substrate	2
In-stream	enhance sinuosity	2
	replace culverts	2
	stabilize stream banks	2
Riparian	stabilize slopes	2
пранан	plant vegetation, extend buffer	3
Agricultural	exclude livestock	0
Agricultural BMPs	manage waste	0
	manage soil loss	0
	road maintenance	0
Forest BMPs	minimize clearcutting	0
	replant	0
Mining BMPs	mining BMPs	0
	flow controls	4
Stormwater	treatment	4
BMPs	maintain storage and treatment facilities	4
	street sweeping	1
	limit pesticide use	2
Drogrammatic	outreach and education campaign	3
Programmatic BMPs	create incentives to follow BMPs	3
	purchase and protect property	3
	seed invertebrates	3
Is the basin at ri	sk of further degradation?	4

Example 1: Little Pilchuck Creel

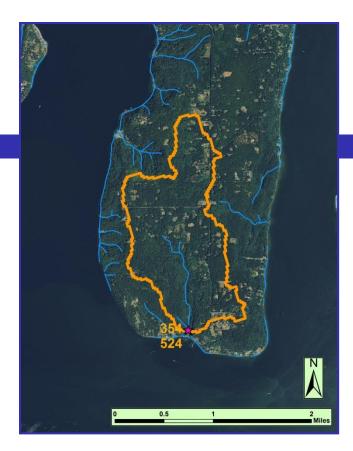

Key restoration or management action(s) recommended:

- stormwater BMPs, homes and airport
- widen buffer where possible
- outreach

✓ More development likely


Example 2: Tahlequah Creek (E2887, 354 and 524)

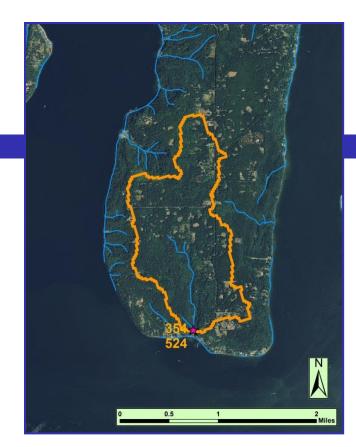
Example 2: Tahlequah Creek


Basin area (acres)	% urban within basin 1- km of site	% urban in whole basin	% pasture in whole basin	% natural in 90-m buffer in whole basin	% impervious in 2011 in whole basin
984.1	3.35%	4.93%	0.05%	99.26%	2.37%

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	1999- 2012 Median
B-IBI						22	24	32	34	32	28	24					28

Example 2: Tahlequah Creek

Resto	Likelihood action would help restore the basin			
	add wood	3		
	add substrate	3		
In-stream	enhance sinuosity	3		
	replace culverts	2		
	stabilize stream banks	2		
Piparian	stabilize slopes	2		
Riparian	plant vegetation, extend buffer	1		
A mi av da una l	exclude livestock	2		
Agricultural BMPs	manage waste	0		
DIVIL 3	manage soil loss	0		
	road maintenance	0		
Forest BMPs	minimize clearcutting	0		
	replant	0		
Mining BMPs	mining BMPs	0		
	flow controls	3		
Stormwater	treatment	3		
BMPs	maintain storage and treatment facilities	2		
	street sweeping	2		
	limit pesticide use	2		
Des sus sus stis	outreach and education campaign	2		
Programmatic BMPs	create incentives to follow BMPs	2		
טועובט	purchase and protect property	2		
	seed invertebrates	4		
Is the basin at ri	4			



Example 2: Tahlequah Creek

Key restoration or management action(s) recommended:

- Invertebrate seeding
- Possibly stormwater BMPs
- Possibly in-channel restoration

Take home impressions

Actions recommended most:

protect what is there (zoning indicates basin at further risk)	200
flow controls (stormwater BMPs)	173
treatment (stormwater BMPs)	172
outreach and education campaign	157
maintain storage and treatment facilities	155
plant vegetation, extend buffer	150
create incentives to follow BMPs	148
limit pesticide use	137
seed invertebrates	137
add wood	130
add substrate	121
enhance sinuosity	120

Values are the sum of the 0-4 scores across the 54 fair basins

Take home impressions

Protecting intact forest, buffers, in-channel habitat from further impacts is critical

Basins with pre-1990 development would likely benefit from stormwater BMPs

Many "fair" basins zoned primarily for rural residential, but have a range of potential stressors

Masins with fewer identified stressors likely easier to fix

Tracking effectiveness of restoration actions and BMPs will be critical